
CROPPING SYSTEMS

Evaluation of GPFARM for Dryland Cropping Systems in Eastern Colorado

Allan A. Andales, Lajpat R. Ahuja,* and Gary A. Peterson

ABSTRACT than 90% were interested in using farm management
decision support software (Frasier et al., 1997). TheGPFARM is an ARS decision support system for strategic (long-
same survey also showed that 57% of 219 producerterm) planning. This study evaluated its performance for comparing

alternative dryland no-till cropping systems and established limits of respondents were interested in a farm management de-
accuracy for eastern Colorado, using data collected in 1987 through cision support product. Central to meeting this chal-
1999 from an ongoing long-term experiment at three locations along lenge, the USDA-ARS Great Plains Systems Research
a gradient of potential evapotranspiration (PET) (Sterling, low PET; Unit (GPSR), in a collaborative effort with Colorado
Stratton, medium PET; and Walsh, high PET). The crop rotations, State University, developed the GPFARM (Great Plains
which included winter wheat (Triticum aestivum L.), corn (Zea mays Framework for Agricultural Resource Management)
L.), sorghum [Sorghum bicolor (L.) Moench], proso millet (Panicum

decision support system (DSS) (Ascough et al., 2002;miliaceum L.), and varying fallow periods, were wheat–fallow, wheat–
Shaffer et al., 2000). The general purpose of GPFARMcorn–fallow, and wheat–corn–millet–fallow at Sterling and Stratton
is to serve as a whole farm/ranch DSS in strategic plan-and wheat–fallow, wheat–sorghum–fallow, and wheat–sorghum–millet–
ning across the Great Plains, for production, economicfallow at Walsh. The ranges of relative error (RE) of simulated mean

and root mean square error (RMSE) were total soil profile water and environmental impact analysis, and site-specific da-
content (RE: 0 to 23%; RMSE: 38 to 76 mm water), dry mass grain tabase generation, from which alternative agricultural
yield (RE: �27 to 84%; RMSE: 419 to 2567 kg ha�1), dry mass crop management systems can be tested and compared. The
residue (RE: �5 to 42%; RMSE: 859 to 1845 kg ha�1), and total soil term strategic planning is defined here as long-term
profile residual nitrate N (RE: �42 to 32%; RMSE: 26 to 78 kg ha�1). planning (e.g., choice of sustainable crop rotation, choice
GPFARM simulations agreed with observed trends and showed that of tillage/residue management system, etc.) as opposed
productivity and water use efficiency increased with cropping intensifi-

to tactical planning (e.g., scheduling of irrigation, chemi-cation and that Stratton was the most productive and Walsh the
cal application, harvesting, etc.), which is done in realleast. GPFARM (v. 2.01) was less suited for year-to-year grain yield
time. Agricultural consultants and progressive farmersprediction under dryland conditions but has potential as a tool for
or ranchers are targeted as the primary users ofstudying long-term interactions between environment and crop man-

agement system. Future development and applications of GPFARM GPFARM. The user requirements for GPFARM were
must account for crop-specific responses to stress, detailed hydrology, identified by ARS customer focus groups in the Great
better understanding of root uptake processes, and spatial variability Plains, comprised of farmers, ranchers, agricultural con-
to give more accurate grain yield predictions in water-stressed envi- sultants, and NRCS and extension professionals. The
ronments. major requirements were that (i) the DSS be simple to

understand and easy to use and (ii) have minimum input
data and parameter requirements.

Sustainable agriculture demands consideration of The GPFARM model is an aggregate of modules
many interrelated factors, processes, resources, and taken from existing agricultural water quality models

institutions. In the Great Plains, there has been a recog- and new modules specifically developed for GPFARM.
nized need for a systems approach for agricultural re- For example, the crop growth module is based on the
search and development for attaining sustainability (As- EPIC generic crop growth model that has been widely
cough et al., 2002). Peterson et al. (1993) proposed that tested for various crops (e.g., Steiner et al., 1987; Wil-
a systems approach to the study of soil and crop manage- liams et al., 1989; Martin et al., 1993; Moulin and Beckie,
ment problems is useful for testing present research 1993; Kiniry et al., 1995; Jara and Stockle, 1999) while
knowledge to answer practical agricultural problems the water balance module, which is a simplification of
and simultaneously identify gaps in basic research the RZWQM (Ahuja et al., 2000) water balance rou-
knowledge. Likewise, there has been a recognized need tines, has not been extensively tested.
for system-level decision support tools for agricultural Most of the modules have been independently tested
advisors and producers. In a 1995 Great Plains survey to varying degrees, but there is a need to evaluate
of 121 county extension directors, 173 NRCS district GPFARM at the system level to see how well the mod-
conservationists, and 95 agricultural consultants, more
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farm/ranch simulation model and relational databases that areules work together to simulate various cropping systems,
accessible through a user-friendly interface that was designedespecially for conditions in the immediate target area
specifically for producers through close collaboration withof eastern Colorado. GPFARM is currently being evalu-
several cooperators in the Great Plains. The main contributionated in five ways: (i) on-farm/ranch testing, (ii) research
of GPFARM is not the introduction of new science but ratherplot or scientific testing, (iii) expert opinion evaluation
the delivery of current research knowledge, embodied in theby producers and scientists, (iv) sensitivity analysis, and simulation model and built-in databases, to agricultural pro-

(v) trend analysis (McMaster et al., 2003). Deer-Ascough ducers and advisors in a user-friendly form. For ease of devel-
et al. (1998) made preliminary evaluations of the grain opment and reduction of parameters, the developers used
yield simulations of the generic crop growth module in simpler scientific approaches that hopefully would be ade-
GPFARM for winter wheat, corn, and proso millet. quate in distinguishing alternate management systems for
They tested the GPFARM model for dryland wheat– long-term strategic planning. Databases of model input param-

eters based on the literature were integrated into the DSS.fallow (WF), wheat–corn–fallow (WCF), and wheat–corn–
Parameterization of plant, soil, climate, and other componentsmillet–fallow (WCMF) rotations in eastern Colorado.
are performed for the user, and all other inputs are minimizedThe average relative grain yield prediction error across
as much as possible (McMaster et al., 2003). Therefore, thethree sites in eastern Colorado and three cropping rota-
GPFARM simulation model is a compromise between scien-tions was 30%. Since this preliminary evaluation, many
tific rigor and simplicity.corrections and enhancements have been made to the

The GPFARM DSS is an aggregate of six major compo-GPFARM science modules. Therefore, the main objec- nents designed to serve as an extensive decision support tool
tives of this study were (i) to evaluate the overall perfor- for farmers and ranchers (Fig. 1). The first component is a
mance of GPFARM version 2.01 in simulating alterna- Microsoft Windows–based graphical user interface (GUI) that
tive dryland cropping systems in eastern Colorado over facilitates the entry of input data, provides simulation control,
multiple years (long term), (ii) to identify limits of relia- and displays output results. The second component includes
bility within which GPFARM can be used as a strategic Microsoft Access databases containing the soils, crops, weeds,
planning tool, and (iii) to assess the value of such simpler climates, agricultural implements, chemicals, and economic

parameters needed in the simulations and analysis of results.modeling approaches in practical applications for the
The third component is an object-oriented modeling frame-future. A secondary objective was to identify the limita-
work that integrates modules for simulating soil water dynam-tions of the model that warrant further investigation,
ics, N dynamics, crop growth, weed growth, beef cattle produc-more rigorous testing of specific modules, reparameter-
tion, pesticide transport, and water/wind erosion. The fourthization, or reworking of theories and mechanisms, espe-
component is a set of analysis tools including a multicriteriacially if it were also to be used for year-to-year planning.
decision-making model (MCDM), graphical/spatial output vi-
sualization, and summary report tables—all to help analyze

MATERIALS AND METHODS and compare different management scenarios. The fifth com-
ponent is a stand-alone economic analysis tool that can takeThe GPFARM Decision Support System production data either from the science model or from user
input to perform detailed economic analyses on the farm orThe GPFARM DSS is unique in that it brings together a

suite of decision support tools integrated with a complex whole ranch enterprise. The sixth component is the Internet-based

Fig. 1. Schematic diagram of the GPFARM decision support system (DSS) components. Arrows indicate the flow of information.
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(http://infosys.ars.usda.gov/; verified 1 Aug. 2003) GPFARM time step ranges from 10�5 to 1 h; GPFARM time step
ranges from 1 h to 6 h) between precipitation events toinformation system containing numerous links to information

on various farm and ranch management options. The system determine soil water fluxes. Water supply at the surface
comes from natural precipitation, irrigation, or snowmelt.contains information on crops and crop management; range

and pasture management; livestock production; soil, water, A simple disaggregation scheme is used to convert the daily
rainfall inputs to intensities of an average daily rainstormand nutrient management; and weed/pest control.

The remainder of this section will be limited to an overview to simulate infiltration and runoff. The Green–Ampt
(Green and Ampt, 1911) method is used to simulate infiltra-of the science simulation modules that were run to produce

the simulation results presented in this paper. Ascough et al. tion during a rainstorm at small time intervals while redistri-
bution of soil water is by Darcian flux (Darcy, 1856) calcu-(2002) and McMaster et al. (2003) present more comprehen-

sive overviews of the GPFARM DSS. lated at 3-h to daily intervals between adjacent layers.
Surface water supply exceeding the infiltration capacity inThe GPFARM science model is a field-by-field simulation

framework (Shaffer et al., 2000) using object-oriented program- any time interval of precipitation becomes surface runoff.
Soil evaporation is a function of soil water content of theming in C�� and executes appropriate simulation modules,

written in procedural languages (FORTRAN and BASIC), first 5 cm of the top soil layer and is limited by the Darcy
flux toward the surface and the potential soil evaporation.for the basic processes (e.g., crop growth, water dynamics,

and C and N cycling). The pertinent simulation modules for Actual transpiration is the sum of root water uptake from
each soil layer, which is based on root mass distribution inthis study were the crop growth module, the soil properties

module, the PET module, the water balance and chemical the profile, available water, and the potential transpiration.
Drainage from the soil profile is estimated by assuming atransport module, and the C- and N-cycling module.
unit gradient at the bottom layer. Chemical transport is

• Crop growth module. Deer-Ascough et al. (1998) describe coupled with water movement based on a uniform mixing
this module, which is a modified version of the EPIC crop model and partitioned between aqueous and adsorbed frac-
growth submodel (Williams et al., 1989) as used in the tions. Pesticide degradation is simulated as a first-order
WEPP soil erosion model (Arnold et al., 1995). The module process with a known half-life.
uses concepts of daily accumulated heat units for plant
phenology; Monteith’s approach for determining potential

• C- and N-cycling module. Based on the NLEAP modelbiomass (Monteith, 1977); simple conceptual water, N, and
(Shaffer et al., 1991, 2001), this module simulates soil Ctemperature stress adjustments to daily growth; and harvest
and N cycling in surface residues and within the soil. It hasindex (HI) for partitioning biomass to economic yield. Crop/
two soil organic matter pools (a fast, readily decomposablevariety-specific parameters to simulate daily growth are
pool and a slower humus pool) and one surface residuekept in a default database. Currently, GPFARM is parame-
pool (Shaffer et al., 2001). Each pool has its own C/N ratioterized for winter wheat, corn, sunflower (Helianthus an-
and is subject to first-order decomposition. The processesnuus L.), sorghum, proso millet, and foxtail/hay millet [Se-
of nitrification, ammonia volatilization, denitrification, croptaria italica (L.) Beauv.].
N uptake, and nitrate N leaching are also included.

• Soil properties module. This module estimates the soil water
Dryland Agroecosystem Management Projectretention curve based on the Brooks and Corey (1964)

parameters from soil texture, bulk density, and organic mat- Experimental data for model testing were taken from an
ter content (Rawls and Brakensiek, 1985). The above soil ongoing, pioneering, dryland agroecosystem project in eastern
property information is obtained from the soil survey data- Colorado (Peterson et al., 1993). The overall objective of the
base or provided by the user. The saturated hydraulic con- project is to identify dryland crop and soil management sys-
ductivity is obtained from effective porosity (Ahuja et al., tems that maximize plant water use efficiency (WUE) and
1989). Unsaturated hydraulic conductivity is estimated from maintain soil productivity while providing an economically
the water retention curve and saturated hydraulic conduc- sustainable level of production. Peterson et al. (1993) give a
tivity using the Campbell (1974) approach. The effects of detailed description of the experimental design, and only an
tillage, residue cover, and reconsolidation (due to rainfall) abbreviated version of their description is given here. The
on bulk density are estimated using the approach of Wil- experimental design is a split block that includes climatic envi-
liams et al. (1984), and hydraulic properties are updated ronment (low PET, medium PET, and high PET), slope posi-
using the regression equations of Rawls and Brakensiek tion (summit, sideslope, toeslope), and cropping system vari-
(1985). ables. The climatic environment variable was represented by

the three locations, all in eastern Colorado, representing three
• PET module. This module, which was adapted from the levels of PET: Sterling (low ET; 40.37� N, 103.13� W), Stratton

RZWQM (Ahuja et al., 2000), calculates daily potential (medium ET; 39.18� N, 102.26� W), and Walsh (high ET; 37.23�
crop transpiration and soil evaporation using the extended N, 102.17� W). Long-term average annual precipitation values
Shuttleworth–Wallace model (Farahani and Ahuja, 1996). are 440, 415, and 395 mm for Sterling, Stratton, and Walsh,
The module calculates net radiation and partitions the avail- respectively. Long-term cropping season open pan evapora-
able energy for potential transpiration, bare soil evapora- tion averages 1600, 1725, and 1975 mm for Sterling, Stratton,
tion, and/or residue-covered soil evaporation. The potential and Walsh, respectively. Each location was divided into two
transpiration, potential soil evaporation, and potential resi- blocks (replicates). Within each block, three cropping systems
due evaporation values then serve as the upper limits of were present: WF, wheat–corn (or sorghum for the Walsh
actual evapotranspiration (ET) calculated in the water bal- site)–fallow [WC(S)F], and wheat–corn (or sorghum for the
ance module. Walsh site)–millet–fallow [WC(S)MF]. Each phase of each

cropping system (rotation) was randomly assigned within each
block. Thus, at each location, all phases of each rotation were• Water balance and chemical transport module. This module

is a simplification of the RZWQM water balance routines present in two replications each year. An experimental unit
is a particular phase of a cropping system at a particular slope(Ahuja et al., 2000) and uses a coarser time step (RZWQM
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Table 1. Soil physical and hydraulic properties at Sterling, Stratton, and Walsh, CO.

Soil Bulk WC§ WC
horizon density Sand Clay OM† Porosity‡ (33 kPa)‡ (1500 kPa)‡ Ksat‡¶

cm g cm�3 % m3 m�3 cm h�1

Sterling summit [Weld loam (fine, smectitic, mesic Aridic Paleustoll)]
0–8 1.37 45.0 20.8 1.37 0.48 0.24 0.14 3.31
8–20 1.35 33.4 30.8 1.09 0.49 0.30 0.17 1.20
20–30 1.23 24.5 38.1 1.09 0.52 0.34 0.20 0.86
30–51 1.21 27.4 27.0 0.77 0.54 0.31 0.17 2.70
51–69 1.31 30.5 22.1 0.46 0.51 0.28 0.14 2.48
69–85 1.34 43.4 20.7 0.21 0.49 0.25 0.14 3.67
85–120 1.43 31.1 25.4 0.13 0.46 0.29 0.15 0.86

Stratton summit [Norka clay loam (fine-silty, mixed, mesic Aridic Argiustoll)]
0–13 1.41 25.00 34.00 1.76 0.47 0.33 0.19 0.23
13–39 1.34 20.00 36.00 1.48 0.49 0.35 0.21 0.27
39–43 1.31 29.00 25.00 0.77 0.51 0.29 0.14 2.27
43–64 1.31 27.00 21.00 0.46 0.51 0.29 0.14 2.27
64–96 1.37 35.00 18.00 0.28 0.48 0.25 0.13 2.86
96–150 1.35 34.00 14.00 0.00 0.49 0.24 0.11 3.95

Walsh summit [loamy sand (fine-loamy, mixed, mesic, Aridic, Ustochrept)]
0–18 1.48 65.40 14.30 0.60 0.44 0.18 0.11 5.22
18–40 1.49 66.40 17.50 0.40 0.44 0.18 0.11 4.27
40–68 1.46 67.60 16.70 0.28 0.45 0.18 0.11 5.13
68–96 1.41 61.00 19.20 0.26 0.47 0.21 0.13 4.74
96–135 1.39 56.40 21.10 0.26 0.48 0.22 0.13 4.10
135–150 1.17 6.50 39.90 1.02 0.56 0.39 0.22 0.49

† OM, organic matter.
‡ Estimated in GPFARM.
§ WC, water content.
¶ Ksat, saturated hydraulic conductivity.

position within a block at a site. The size of an individual Measurements pertinent to the evaluation of GPFARM
included daily weather data, soil water content, soil residualexperimental unit varies. All units are 6.1 m wide but vary

in length with the particular site (ranging from 185–305 m). NO3–N, dry matter biomass and grain yields, and crop residue
dry mass. Many more variables were measured, as describedHowever, a constant length in the middle of each unit was

harvested for the experiment. by Peterson et al. (1993), but were not considered in the
model evaluations. An automated weather station at each siteCropping systems represent a continuum with increasing

cropping intensity and fewer summer fallow periods. The crop- measured daily air temperature (maximum and minimum),
mean relative humidity, precipitation, total solar radiation,ping systems were all managed with no-till techniques to max-

imize water storage potential. Since all phases of each rotation wind direction, and mean wind speed. Soil water content
(30-cm increments down to a depth of 150 cm) was measuredwere present each year, all cropping systems could be com-

pared on an annual basis because all crops in a given system at strategic times (biweekly during summer months) in each
cropping system by use of neutron attenuation. Soil residualwere annually present and were affected by that year’s particu-

lar environmental conditions. NO3–N (at varying increments down to a depth of 150 cm) was
measured before planting for making fertilizer N calculations.Dramatic differences in soils exist between the three sites.

Table 1 shows the measured soil physical properties along Dry mass grain yields were measured with a plot combine
while total aboveground biomass was measured at harvest bywith the soil hydraulic properties estimated by GPFARM.

The summit loam soil at Sterling is relatively shallow, with a hand-sampling a small area in each experimental unit. The
harvest indices (dry mass grain yield/total biomass) were deter-partially cemented layer at about 90-cm depth that is slowly

permeable to water but relatively impermeable to roots. At mined from the hand samples. Crop residue dry mass was
measured at planting and just before harvest for each crop inStratton, the summit soil is clay loam with few water or root

restrictions. The summit soil at Walsh is loamy sand with no each cropping system. With the exception of weather variables,
all measurements from a particular cropping system were donerestrictions to water infiltration or root penetration and a

plug at 135-cm depth by virtue of the abrupt increase in clay in two replicates (i.e., taken from two blocks). The replicates
were averaged for comparison with simulation results fromcontent. In the order of decreasing plant available water-hold-

ing capacity, the summit soils are ranked Stratton � Walsh � GPFARM.
Sterling.

Fertilizer N was applied to each experimental unit, ac-
Model Inputs and Calibrationcording to soil tests obtained from each soil within each rota-

tion and specific for the crop present in a given year. The N Model Inputs
fertilizer source, urea NH4NO3 solution (32–0–0), was applied

The GPFARM model was initialized using observed dataat planting with a dribble method directly behind the planter
for soil profile water content, crop residue, and soil profile(Peterson et al., 1993). Phosphorus (10–34–0) was band-
residual nitrate N corresponding to the simulation start dates.applied at planting of all crops near the seed (Peterson et al.,
Observed bulk density, texture, and organic matter content2000). Phosphorus was applied on one-half of each wheat
of the soil layers (Table 1) were also input into GPFARM.(until 1992), corn, and proso millet plot over all soils but
From these properties, the model estimated the soil waterapplied to the entire wheat plot since the 1993 crop year.
retention curve, soil porosity (or saturated water content), soilThe P application rate was 9.5 kg/ha each year. Grain yield
water content at field capacity (33 kPa), soil water content atresponse to P is not currently simulated in GPFARM, but it

was found to be small to negligible in the experiment. wilting point (1500 kPa), and saturated/unsaturated hydraulic
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Table 2. Best estimates of critical crop parameters used in GPFARM simulations.

Value

Parameter Definition Units Winter wheat Corn Proso millet Sorghum

GDDMAX growing degree days from planting to maturity/harvest �C-d 2300.00 1500.00 1300.00 1800.00
HI† harvest index 0–1 ratio 0.48 0.65 0.45 0.50
HMAX maximum canopy height m 0.91 2.60 1.20 1.01
LAImax† maximum leaf area index potential m2 m�2 2.00 3.50 2.40 3.50
BEINP biomass energy ratio for a crop kg MJ�1 30.00 35.00 35.00 25.00
BN1 plant N concentration parameter at seedling stage kg t�1 0.0600 0.0400 0.0440 0.0440
BN2 plant N concentration parameter halfway through the season kg t�1 0.0231 0.0164 0.0164 0.0164
BN3 plant N concentration parameter at maturity kg t�1 0.0134 0.0128 0.0128 0.0128
BTEMP base temperature of crop �C 0.00 10.00 5.00 10.00
CRIT growing degree days to emergence �C-d 140.00 60.00 65.00 60.00
DLAI heat unit index when leaf area index starts to decline; fraction of GDDMAX 0–1 0.70 0.80 0.80 0.85
EXTNCT radiation extinction coefficient 0.65 0.65 0.65 0.60
OTEMP optimal temperature for plant growth �C-d 20.00 25.00 20.00 27.50
RDMAX maximum rooting depth m 1.50 1.50 1.00 1.50
RSR root/shoot ratio 0–1 ratio 0.25 0.25 0.25 0.25
SPRIOD period over which senescence occurs d 14.00 30.00 30.00 40.00
RLAD rate of LAI decline 1.00 0.10 1.00 1.00
PPOP1 plant density at FMLAI1 plants m�2 125.00 4.00 125.00 5.00
FMLAI1 fraction of XMXLAI corresponding to PPOP1 0–1 ratio 0.60 0.47 0.60 0.43
PPOP2 plant density at FMLAI2 plants m�2 250.00 7.00 250.00 15.00
FMLAI2 fraction of XMXLAI corresponding to PPOP2 0–1 ratio 0.95 0.80 0.80 0.79

† Calibrated to optimize predicted total biomass, HI, and grain yield.

conductivity (Rawls and Brakensiek, 1985; Ahuja et al., 1989, or N (Williams et al., 1989). These unstressed input values
are then adjusted inside the model for stresses. In an adjunct1999). Actual soil horizons (Table 1) were used for the simula-

tions. Actual N application rates were also used in the simu- study, we compared the use of summit vs. toeslope data from
the Sterling site to obtain these calibrated values for winterlations.

Weather inputs into GPFARM included observed daily wheat, corn, and proso millet. Data from the WF rotation
(1988–1997) beginning with the wheat phase in 1988 were usedprecipitation (mm), maximum and minimum air temperatures

(�C), solar radiation (Langleys d�1), wind speed (m s�1), and for winter wheat calibration, data from the WCF rotation
(1988–1999) beginning with the corn phase in 1988 were usedrelative humidity (%). All weather inputs were measured on-

site, except for daily precipitation data for Sterling, which for corn calibration, and data from the WCMF rotation (1988–
1993) beginning with the millet phase in 1988 were used forwere downloaded from the Colorado Climate Center (CCC)

website. The CCC precipitation station near Sterling was ap- proso millet calibration. The summit soil profile at Sterling
had a root restriction at 90-cm depth and had less availableproximately 21 km (13 miles) northwest of the experimental

site. The complete precipitation data set (1987–1999 for Ster- water than the toeslope position, with a deeper soil profile
and more total available water. The calibrated values of LAImaxling) from the CCC was used in lieu of the on-site precipitation

data set that had numerous gaps, especially during the win- and HI obtained from the above two data sets were signifi-
cantly different, obviously affected by different degrees ofter months.
stress (data not shown). It also turned out that the parameters
calibrated based on the small subset of experimental data atModel Calibration
the summit position gave better predictions of grain yields at

Model calibration was done only for two plant growth pa- the summit for the rest of the summit data than the parameters
rameters: the maximum leaf area index (LAImax) and the po- calibrated based on toeslope data. In spite of these results,
tential HI. For other plant growth parameters of the crops we chose to use the parameters calibrated from the toeslope
involved in the study (winter wheat, corn, proso millet, and data at Sterling for model evaluations because they repre-
sorghum), the best estimates from the literature were used sented much lower stress conditions, closer to the nonstress
(Table 2) and verified to be within the ranges recommended conditions theoretically required, and because their use pro-
by Arnold et al. (1995) and Kiniry et al. (1995). For soil vided a more rigorous (independent) test of the crop model
water, soil residual nitrate N, and crop residue decomposition at the summit positions of the three sites.
processes, no calibrations were done. In the calibration at the Sterling toeslope position, simu-

The LAImax for each crop was adjusted (within ranges ex- lated grain yield agreed with observed values, and simulated
pected for the study site) to minimize the RMSE of simulated total soil profile water content was slightly lower than ob-
total aboveground biomass. The HI for each crop was adjusted served at most times (Fig. 2). The LAImax and HI values for
by trial and error (based on observed HI) to minimize the sorghum were calibrated using Walsh data (WSF rotation
RMSE of HI predictions. Input values for HI represent poten- beginning with the sorghum phase in 1988) because sorghum
tial (unstressed) values. The calibrated HI values for winter was planted only at that location.
wheat (HI � 0.48) and corn (HI � 0.65) were considerably
higher than those recommended by Kiniry et al. (1995), which

Model Evaluation Procedurewere 0.40 and 0.55, respectively. Nevertheless, the simulated
harvest-time HI values, which were adjusted for water, tem- To address the main objectives of the study, we focused on
perature, and N stresses, ended up much lower and were close answering the following sets of questions:
to observed values. Apparently, the high calibrated HI values
for winter wheat and corn compensated for overadjustments 1. How accurate are GPFARM simulations of total soil

profile water content, grain yield, crop residue, and totalof HI in the model.
The input values of LAImax and HI are supposed to be values residual soil profile nitrate N?

2. Can GPFARM simulate cropping system differences infor nonstress conditions with respect to water, temperature,
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excluded from comparisons with simulated grain yields.
Steiner et al. (1987) and Cabelguenne et al. (1999) used similar
approaches of data screening to limit evaluations to the validity
domain of the models. The aforementioned adverse factors,
which are not unusual in the Great Plains, will need to be
added and tested separately in the future for GPFARM to
be widely applicable in the Great Plains. GPFARM includes
a weed module, but there were insufficient quantitative obser-
vations of weed infestation to allow calibration of the weed
module. At present, we are not aware of any single crop model
that can adequately simulate all of the adverse factors men-
tioned.

The simulation periods for evaluation began in 1988 and
ended in 1997, 1999, and 1993 for WF, WC(S)F, and WC(S)MF
rotations, respectively. The WF simulations ended in 1997
because this system was subsequently converted to wheat–corn–
proso millet rotation (Peterson et al., 2000). For WC(S)MF,
sunflower was planted in place of proso millet after 1993
(Peterson et al., 1995), but the sunflower crops produced little
or no yields, which limited our ability to calibrate the crop
model for sunflower grain yield. Thus, we ended the WC(S)MF
simulations in 1993. Average (i.e., from two replicates) total
soil profile water content, grain yield, crop residue, and total
residual soil profile nitrate N observed during the above peri-
ods were compared with corresponding GPFARM simulation
outputs. In the calculation of evaluation statistics, we pooled
data from all phases of a rotation at each location. For exam-
ple, using the WCF rotation at Sterling, observed (mean of
two replicates) and simulated data from the wheat phase
(WCF-W), corn phase (WCF-C), and fallow phase (WCF-F)
were pooled to calculate each statistic describing the WCF
rotation at Sterling.

The following four statistics were calculated to quantify the
accuracy of the GPFARM simulations: (i) RE, which shows
bias of the predicted mean relative to the observed mean; (ii)
RMSE, which shows the average deviation between predicted
and observed values, regardless of sign; (iii) index of agree-
ment, d, which gives the proportion of the observed variance
that is explained by the model; and (iv) simulated and observed
coefficient of variation, CV, which show whether or not simu-
lated and observed variability are similar. Simulated valuesFig. 2. Simulated grain yield and total soil profile water content
were compared with the mean of two observations (replicates)against the observed values for calibration years at the toeslope
from each cropping system. Relative error was expressed inposition of the Sterling site. The simulated soil profile was

150 cm deep. percent as:

productivity within and across locations over multiple RE �
(p � o)

o
100 [1]

years?
3. What are the strengths and limitations of the model? where p is the predicted mean and o is the observed mean.

The RMSE was calculated by:For answering the above questions, we chose to limit our
evaluations to summit positions of the Sterling, Stratton, and
Walsh locations because the sideslope and toeslope positions
had the uncertainty of receiving unmeasured runoff water RMSE � ��

n

i�1

(pi � oi)2

n
[2]

from upslope areas, which is not simulated in the present
version of GPFARM. The evaluations of soil water and soil
residual nitrate N simulations were limited to total soil pro-
file amounts. where pi is the ith predicted value, oi is the ith observed value,

As this study comprised the first system-level test of and n is the number of data pairs. The index of agreement
GPFARM, our crop model evaluations addressed the ability was calculated as proposed by Willmott (1981) and Willmott
to simulate weather-induced (i.e., caused by water and temper- and Wicks (1980):
ature stresses) variability in grain yields at each location. We
felt that this should first be established before attempting to
simulate other factors (e.g., natural hazards) that affect dry-

d � 1 � � �
n

i�1
(pi � oi)2

�
n

i�1

(/p�i / � /o�i /)2� , 0 � d � 1 [3]land grain yields in eastern Colorado where grain yields are
usually limited by precipitation. Observed grain yields that
were affected by weed infestation, erratic emergence due to
hard surface soil conditions, hail damage, or killing frost were where pi, oi, and n are as previously defined and p�i � pi �
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o and o�i � oi � o, where o is the observed mean and the Total Soil Profile Water Content
enclosing slashes (//) indicate absolute values. A d value of

Overall, total soil profile water content simulations1 indicates complete agreement between model predictions
were better at Walsh (Fig. 3; lowest RMSE and highestand observations.
d values) than at Sterling or Stratton. This may be attrib-Differences in overall productivity between the WF,
uted to better soil parameterization and precipitationWC(S)F, and WC(S)MF rotations were assessed through com-
data at Walsh. The REs in the means ranged from 13parison of annualized yields from the rotations for the period

1989 through 1993. [WC(S)MF rotation only existed in the to 23% at Sterling, 18 to 23% at Stratton, and 0 to 11%
experiment until 1993.] We calculated annualized yield by at Walsh. Mean water contents at the three locations
summing the dry mass of grain yields of all crops and dividing were generally overpredicted, but the tendency for over-
by the total number of years in the rotation. Simulated and prediction was more evident at Sterling and Stratton
observed annualized yields were compared to check for rea- (Fig. 3). The reasons for the overprediction could not
sonable simulation of trends in productivity associated with be identified because of lack of experimental informa-increased cropping intensity. Two sets of comparisons were

tion on some water balance components (e.g., surfacemade to consider: (i) the effect of increasing cropping intensity
runoff) and on root distribution in the soil profile. Simu-and (ii) the effect of climate and soil (i.e., differences in lo-
lated and observed variability in soil water content, rep-cations).

Water use efficiency, production per unit water used, is a
diagnostic tool for evaluating cropping systems with a single
numeric value because it combines productivity and water use
(Peterson et al., 1993). The grain yield WUE diagnostic is an
important and sensitive means of evaluating the combined
effects of climate, soil, and cropping system. Water use effi-
ciency was calculated for the period 1989 through 1993 by
dividing total dry mass grain yield by the total ET for the
entire period. Note that the fallow periods were included.
Simulated and observed WUE were compared to evaluate the
ability of GPFARM to distinguish between the performances
of different cropping systems.

Water use efficiency for each cropping system in a given
period was calculated using the equation:

WUE � grain yield/ET [4]

where grain yield is the total dry mass grain yield for the
period (kg ha�1) and ET is the total evapotranspiration for
the period (cm H2O). We had some difficulty in estimating
ET from the experiment because on-site measurements of
some water balance components (i.e., surface runoff and drain-
age) were not available. Thus, our calculation of observed ET
was limited by availability of measured data, and we had to
settle on the following approximation for both simulated and
observed ET from each cropping system:

ET � WC i � precip � WC f [5]

where WCi is initial soil water content in the profile (cm),
precip is the total precipitation during the period (cm), and
WCf is the final soil water content in the profile at the end of
the period (cm). Equation [5] assumes that surface runoff and
drainage from the profile are negligible, which is not a bad
assumption in the long term for this semiarid region and was
also assumed by Peterson et al. (1993) in their WUE calcu-
lations.

RESULTS
Evaluation of Process Simulations

The GPFARM model simulations of dryland crop-
ping systems at three locations (summit positions) in
eastern Colorado were evaluated based on four process Fig. 3. Simulated total soil profile water content against the observed

values at three locations (summit position) in eastern Coloradostate variables: total soil profile water content, grain
for three rotations {wheat–fallow (WF): 1988–1999; wheat–cornyield, crop residue, and total soil profile residual NO3–N. (or sorghum)–fallow [WC(S)F]: 1988–1999; wheat–corn (or sor-

Results of the quantitative evaluation are described be- ghum)–millet–fallow [WC(S)MF]: 1988–1993}. Values in parenthe-
ses are root mean square error (RMSE) (mm H2O) and d values.low for each state variable.
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resented by the CVs, were similar at Sterling and Walsh, Grain yield prediction for winter wheat and proso
millet tended to be better at the location where theyand simulated variability was slightly less than observed

at Stratton (detailed statistics not shown). were calibrated. This was not the case for corn. For
instance, REs for winter wheat were generally lowerGPFARM simulated the correct timing for most of

the observed drying and wetting events over time for (and d generally higher) at Sterling than at Stratton
and Walsh. The RE of predicted millet yield was lowerall locations. In the case of the WC(S)F rotation begin-

ning with the corn (or sorghum) phase in 1988, the (RE � 11.5%) at Sterling than at Stratton (RE � 27%)
or Walsh (RE � 84%).simulated soil profile did not dry out as much as ob-

served at Sterling and Stratton, but closely followed the The REs in simulated winter wheat grain yield were
within �27%, with the lowest magnitudes occurring atdrying and wetting patterns at Walsh (Fig. 4).
Sterling (where winter wheat was calibrated) and the
largest magnitudes at Walsh (Table 3). Mean winterGrain Yield
wheat grain yields were generally overestimated at Ster-A comparison of RE values among the Sterling, Strat- ling and underestimated at Stratton and Walsh. Theton, and Walsh locations reveals that GPFARM gener- RMSE values for winter wheat grain yield were gener-ally predicted long-term average grain yields with a mar- ally lower at Sterling (where winter wheat was calibratedgin of �30% or better (Table 3). Exceptions were corn at the toeslope position) than at Stratton and Walshyield prediction at Sterling (≈50% RE) and millet yield (Fig. 5). The d values for winter wheat grain yield variedprediction at Walsh (84% RE). Based on RMSE values, over a wide range (0.26–0.78). Oddly, both the highestthe best simulations of grain yield were for winter wheat, (WCMF: d � 0.78) and lowest (WCF: d � 0.26) d valuesand the worst were for corn (see Fig. 5 and 6). Among were observed at Sterling. In general, there was a ten-the four crops, the lowest RE values and highest d values dency to underestimate wheat grain yield variability atwere obtained with winter wheat. Apparently, as a long- Sterling and to overestimate variability at Stratton andduration crop, winter wheat is less sensitive to variable Walsh. Simulated CV tended to decrease with increasingsoil moisture conditions than the short-duration summer mean simulated winter wheat grain yields (Table 3).crops (corn, sorghum, and millet). The REs in simulated corn grain yield were larger
than for winter wheat grain yield. Mean corn grain yields
were overpredicted by around 50% at Sterling and by
29% at Stratton. The RMSE values for corn grain yield
(Fig. 6a and 6b) were the highest (�2000 kg/ha) among
the four crops. They were slightly lower at Sterling
(where corn was calibrated at the toeslope position)
than at Stratton. Agreement between simulated and
observed corn grain yields was poor (d � 0.16–0.31)
at Sterling and mediocre (d ≈ 0.50) at Stratton. The
simulated CV was similar to observed in all cases except
for WCMF at Sterling.

For sorghum, which was planted only at Walsh, the
RE was approximately 0% in the WSMF rotation and
�23% in the WSF rotation (Table 3). The RMSE values
were 686 kg/ha in the WSMF rotation and almost double
(1016 kg/ha) in the WSF rotation (Fig. 6c). The d values
were 0.77 and 0.53 for the aforementioned rotations,
respectively. The CV of sorghum grain yield was overes-
timated.

Relative errors of proso millet grain yield simulations
were 12% at Sterling and 27% at Stratton (Table 3). The
evaluation statistics at Walsh were not very meaningful
because there were only two observations. Because of
consistently low yields, proso millet at Walsh was re-
placed by forage sorghum beginning in 1993. Similar to
our observations for winter wheat and corn, the RMSE
for proso millet grain yields was lower at Sterling (where
millet was calibrated at the toeslope position) than at
Stratton and Walsh (Fig. 6d). There was poor agreement
between simulated and observed proso millet grain
yields at Sterling and Stratton (d � 0.18–0.44). The

Fig. 4. Time series (1988–1999) of simulated and observed total soil CV was underestimated at Sterling and overestimated
water content at Sterling, Stratton, and Walsh for the wheat–corn at Stratton.(or sorghum)–fallow [WC(S)F] rotation beginning with the corn

Overall, the grain yield simulations leave much to be(or sorghum) phase in 1988 (Sterling and Stratton: WCF-C; Walsh:
WSF-S). desired and indicate limitations of the crop model in
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Table 3. Evaluation statistics for simulated grain yield (three locations in eastern Colorado; three rotations).

Observed GPFARM simulated
No. of

Rotation† observations Mean CV‡ Mean CV RE§ d (0–1)

kg ha�1 % kg ha�1 %
Winter wheat grain yield

Sterling
WF 7 1929 27 1918 27 �1 0.65
WCF 10 1969 33 2216 16 13 0.26
WCMF 5 1964 31 2165 20 10 0.78

Stratton
WF 8 2459 20 1887 44 �23 0.35
WCF 8 2180 16 2173 25 0 0.44
WCMF 9 2463 23 2148 31 �13 0.50

Walsh
WF 6 1702 30 1296 26 �24 0.58
WSF 6 1971 23 1433 30 �27 0.66
WSMF 6 1868 14 1648 32 �12 0.41

Corn grain yield
Sterling

WCF 8 3315 25 5043 29 52 0.31
WCMF 6 3024 16 4464 37 48 0.16

Stratton
WCF 5 3780 47 4877 47 29 0.49
WCMF 5 3723 43 4795 46 29 0.50

Sorghum grain yield (Walsh only)
WSF 5 2577 24 1989 46 �23 0.53
WSMF 11 1995 36 1998 42 0 0.77

Proso millet grain yield [WC(S)MF only]
Sterling 5 1810 22 2018 12 12 0.18
Stratton 5 1554 28 1975 47 27 0.44
Walsh 2 814 1 1496 35 84 0.00

† WF, wheat–fallow; WCF, wheat–corn–fallow; WCMF, wheat–corn–millet–fallow; WSF, wheat–sorghum–fallow; WSMF, wheat–sorghum–millet–fallow.
‡ CV, coefficient of variation.
§ RE, relative error (of mean).

simulating grain yield under dryland conditions in east- WC(S)MF exhibited the highest RMSE values com-
pared with WF and WC(S)F]. Also, better agreementern Colorado. We looked into the biomass and HI simu-

lations at Sterling to get some insight into the shortcom- between simulated and observed crop residue was ob-
tained at Sterling and Stratton (d � 0.67–0.80) than atings of the crop model. In the model, grain yield is

calculated by multiplying the aboveground biomass at Walsh (d � 0.45–0.59). The CV was generally underesti-
mated at all locations, with the simulated CV beingharvest by the HI (adjusted for water, temperature, or

N stress). We found that mean corn biomass was over- closer to the observed CV at Sterling than at Stratton
or Walsh. Amounts of surface crop residue are closelypredicted by 35 to 45% whereas mean simulated HIs

were similar to observed values. For winter wheat, the tied to amounts of crop biomass produced. The model
assumes that 80% of stalks are added to existing surfaceRE values were within �10% for both biomass and HI,

but the agreement between simulated and observed HI crop residue at harvest. Thus, errors in biomass predic-
tion translate to errors in crop residue prediction. Inac-was poor to mediocre (d � 0.22–0.51). The variability

in winter wheat biomass was also underestimated (i.e., curacies in the simulation of residue addition during
harvesting and subsequent decay may have also contrib-simulated CVs lower than observed). For proso millet,

there was poor agreement between simulated and ob- uted to errors.
served biomass (d � 0.20) and HI (d � 0.24) while the
RE values were still within �15%. Variability in both Total Soil Profile Residual Nitrate Nitrogen
biomass and HI of proso millet was also underestimated. The prediction of residual soil profile nitrate N
Errors in prediction of biomass seem to be the major amounts at planting time is inherently complex because
reason for errors in simulated grain yield for corn and of numerous plant–soil–environment factors that inter-
proso millet whereas in winter wheat, the contributions act to influence N cycling in the soil. Predicting nitrate
of biomass and HI to errors in simulated grain yields N amounts over an extended number of years is an even
varied with rotation. greater challenge. Overall, the soil residual nitrate N was

predicted within �40% RE or better. The RE values for
Crop Residue total soil profile residual NO3–N varied widely at each

location (detailed statistics not shown). The RE wasIn the majority of cases, the RE in residue prediction
was less than 26% (detailed statistics not shown). The exceptionally low under WF at Sterling (�2%) and un-

der WCF (�1%) and WCMF (5%) at Stratton. TheRE values were lower (�5% to 16%) at Sterling and
Stratton than at Walsh (16–42%). The RMSE values means were consistently underestimated at Walsh (RE �

�42% to �20%). The RMSE values were lowest at Ster-(Fig. 7a) were generally lowest at Sterling and tended
to increase with cropping intensity at all locations [i.e., ling and greatest at Stratton (Fig. 7b). The highest d
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Fig. 6. Simulated dry mass corn grain yield at (a) Sterling and (b)
Stratton, simulated sorghum grain yield at (c) Walsh, and (d) simu-
lated proso millet grain yield {wheat–corn (or sorghum)–millet–
fallow [WC(S)MF] rotation only} at three locations against the
observed values for two rotations {wheat–corn (or sorghum)–fallow
[WC(S)F]: 1988–1999; WC(S)MF: 1988–1993}. Values in parenthe-
ses are root mean square error (RMSE) values (kg ha�1).

residual nitrate N variability in most cases. Predicted
residual nitrate N was highly sensitive to the amount of
organic matter in the soil and to crop leaf area index.
The lack of within-season residual nitrate N data pre-
vented us from evaluating root uptake of nitrate.

Evaluation of Cropping System Simulations
The model was able to simulate two observed trends

among the cropping systems (Peterson et al., 1993).
First, the model simulated the increased productivity
with a 3- or 4-yr rotation vs. the 2-yr rotation (Fig. 8).
Second, the model simulated productivity differences
between locations: Stratton being the most productive
and Walsh being the least productive. Annualized simu-
lated grain yields followed a similar trend as the ob-
served, but deviations from the observations were more
pronounced for the WC(S)F and WC(S)MF systems.
This was expected as the corn and proso millet grain
yields were overpredicted for those systems (Table 3).
Annualized yield predictions for the WF system were
very close to the observed at all locations. The results
demonstrate that, although it did not capture the spatio-
temporal variability in grain yield very well (see
Table 3), GPFARM may be useful in evaluating crop-
ping systems on the basis of long-term relative produc-
tivity. Future improvements in the accuracy of grain
yield simulations will increase the accuracy of annu-Fig. 5. Simulated winter wheat grain yield (dry mass) against the
alized grain yield comparisons among alternative crop-observed values at three locations (summit position) in eastern

Colorado for three rotations {wheat–fallow (WF): 1988–1999; ping systems.
wheat–corn (or sorghum)–fallow [WC(S)F]: 1988–1999; wheat– Simulated and observed grain WUE for the three
corn (or sorghum)–millet–fallow [WC(S)MF]: 1988–1993}. Values cropping systems at the three locations showed similarin parentheses are root mean square error (RMSE) values (kg ha�1).

trends (Fig. 9). The simulated and observed grain WUE
for each cropping system may be inaccurate because ofvalues were obtained at Sterling (WF: d � 0.82; WCF:

d � 0.60) while d values in all other cases ranged from the assumptions (i.e., surface runoff and drainage were
negligible) made in calculating ET, but the differences0.25 to 0.59. There was a tendency to overpredict soil
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Fig. 7. Simulated (a) dry mass surface crop residue and (b) total soil profile residual NO3–N against the observed values at three locations
(summit position) in eastern Colorado for three rotations {wheat–fallow (WF): 1988–1999; wheat–corn (or sorghum)–fallow [WC(S)F]:
1988–1999; wheat–corn (or sorghum)–millet–fallow [WC(S)MF]: 1988–1993}. Values in parentheses are root mean square error (RMSE) (kg
ha�1) and d values.

between them are assumed to be reasonable since they tween estimated and simulated WUE. Nevertheless,
both the simulated and observed WUE showed a rela-presumably contain the same error (i.e., errors cancel

out when considering differences in WUE). Interest- tively large incremental increase when going from the
WF to the WC(S)F rotation but showed very little (andingly, the GPFARM-simulated WUEs showed relative

differences similar to those in the observed WUEs, par- even negative) incremental increase when shifting from
WC(S)F to the WC(S)MF rotation. These results wereticularly in matching the trend. Overpredictions in corn

and proso millet yields in the WC(S)F and WC(S)MF consistent with the findings of Peterson et al. (1993)
and Farahani et al. (1998) at the same locations. Again,systems may have contributed to the discrepancies be-
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Fig. 9. Grain water use efficiency (WUE) at three locations (1 �
Sterling, 2 � Stratton, and 3 � Walsh) in three crop rotations for
the period 1989 through 1993. The legend indicates location and

Fig. 8. Annualized grain yields (dry mass) at three locations (1 � either observed (o) or predicted (p) value (e.g., 1-p � Sterling
Sterling, 2 � Stratton, and 3 � Walsh) in three crop rotations for predicted). WF, wheat–fallow (rotation); WC(S)F, wheat–corn (or
the period 1989 through 1993. The legend indicates location and sorghum)–fallow (rotation); and WC(S)MF, wheat–corn (or sor-
either observed (o) or predicted (p) value (e.g., 1-p � Sterling ghum)–millet–fallow (rotation).
predicted). WF, wheat–fallow (rotation); WC(S)F, wheat–corn (or
sorghum)–fallow (rotation); and WC(S)MF, wheat–corn (or sor- term) prediction errors. The acceptable limits of accu-
ghum)–millet–fallow (rotation). racy depend on the user needs, the type of management

practices being compared and economic value of the
GPFARM was able to simulate the observed pattern differences between them, and whether the interest is in
of WUE across the three locations: WUE was highest long-term or short-term differences (or both). GPFARM
at Stratton and least at Walsh. was shown to be better for evaluating long-term average

GPFARM captured the trends in average crop resi- differences or trends than for short-term comparisons.
dues very well (Fig. 10). The observed data on crop The EPIC-based crop growth model in GPFARM
residues are averages of preplant and preharvest residue appears to be more appropriate in estimating long-term
measurements taken during the 1989 to 1993 period. average crop yields or trends in yields rather than simu-
The increased amount of crop residue maintained at the lating year-to-year variability in crop yields in eastern
soil surface with the WC(S)F and WC(S)MF rotations Colorado. This agrees with the findings of other investi-
compared with WF is another benefit of increased crop- gators who tested the EPIC crop growth model. Kiniry
ping intensity with no-till management. Crop residues et al. (1995) observed that EPIC can give reasonable
on the soil surface protect the soil from erosion, reduce mean yield simulations for the major crops and forages
soil evaporation, and contribute organic matter to the in the northern Great Plains but was unable to ade-
soil when they decay. quately simulate yield in some low-yielding years. This

is consistent with the overpredictions of corn and proso
millet grain yields that we observed in low-yielding dry-DISCUSSION
land conditions in eastern Colorado. Similar to our find-

The general purpose of GPFARM is to serve as a ings, Kiniry et al. (1995) also observed EPIC’s inability
whole farm/ranch DSS for strategic (long-term) planning to simulate year-to-year variability in yield. Jara and
across the Great Plains, including production, economic Stockle (1999) found that EPIC performed poorly in
and environmental impact analysis, and site-specific da-
tabase generation, from which alternative agricultural
management systems can be tested and compared. In
crop production, the analysis of the economic viability
of alternative management systems using a DSS such as
GPFARM depends on accurate simulation of economic
yield over a wide range of environmental and manage-
ment conditions. Therefore, the model not only needs to
accurately simulate the crop environment (e.g., weather,
soil water balance, amount of surface residue, etc.) but
also accurately simulate crop growth and yield. The
results presented in this paper provide the limits of accu-
racy (RE, RMSE, and d values) within which GPFARM
may be used to gauge performance of crops, as influ- Fig. 10. Average crop residue on the soil surface at three locations

(1 � Sterling, 2 � Stratton, and 3 � Walsh) in three crop rotationsenced by environmental variables, in alternative crop-
for the period 1989 through 1993. The legend indicates locationping systems under dryland, water-stressed conditions.
and either observed (o) or predicted (p) value (e.g., 1-p � SterlingWhereas the RE is an arithmetic average over the dura- predicted). WF, wheat–fallow (rotation); WC(S)F, wheat–corn (or

tion of data (i.e., shows long-term bias), the RMSE sorghum)–fallow (rotation); and WC(S)MF, wheat–corn (or sor-
ghum)–millet–fallow (rotation).and d values indicate the average event-by-event (short-
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simulating corn water uptake under water stress. Cabel- out that experimental plot data are not as buffered
guenne et al. (1999) observed that EPIC overestimated against pest damage and individual management errors
vegetative biomass and grain production, especially un- as averaged county grain yields. They cited two con-
der conditions of pronounced water stress. All these trasting studies: one that reported accurate grain yield
suggest that the dryland conditions in eastern Colorado, simulation using averaged county grain yields (Kiniry
which are characterized by periods of extreme water et al., 1997) and another that reported poor simulation
and temperature stresses, may be outside the validity of year-to-year grain yield variability using research plot
domain of the EPIC crop model. However, the use of data (Otegui et al., 1996). GPFARM was developed to
a generic crop model in GPFARM, as opposed to having operate at the field scale, and both inputs (e.g., soil
several crop-specific (more process detail) models, physical properties) and outputs (e.g., grain yield) of
greatly simplifies parameterization for many different the model represent conditions averaged over an entire
crops grown in the Great Plains. The unavailability of field. On the other hand, the observed data used to
within-season growth data made verification of the crop evaluate the model were taken at the plot scale, which
growth model difficult, and calibration was based only is subject to greater variability. This may partly explain
on final grain yield and biomass data. This may have the apparent inadequacy of the model in simulating the
been a greater limitation with corn, proso millet, and observed variability in grain yields.
sorghum, which are exposed to more of the water and The GPFARM simulations of total soil water content
high-temperature stresses in summer compared with in the profile were comparable in accuracy to those
winter wheat. Therefore, more rigorous testing and im- of RZWQM, which simulates the soil water balance
provement of the EPIC-based crop model in GPFARM with greater process detail. The indices of agreement
must be done under dryland conditions in eastern Colo- (d) between GPFARM and observed total soil profile
rado using detailed observations of biomass, leaf area water content ranged from 0.64 to 0.81 across the three
index, phenology, HI, and grain yield for various crops sites. In comparison, Wu et al. (1999) reported lower d
grown in the area. The correct simulation of crop re- values (0.54–0.59) for total water content simulations
sponse to extreme water stresses prevalent in eastern of RZWQM during two seasons in a sandy soil near
Colorado must be ascertained before making attempts Princeton, MN. The average RMSE in GPFARM-simu-
at simulating more complex factors such as weed compe- lated total volumetric water content of the soil profiletition, freeze damage, and erratic emergence. Recalibra- ranged from 0.029 to 0.052 across the three locationstion of the crop parameters and modification of the over multiple years. For RZWQM, Ma et al. (2002)stress functions in the crop model may be required. reported RMSE values for total soil profile water con-Also, recent enhancements made to the generic EPIC

tent of 0.023 and 0.027 cm3 cm�3 for a single irrigatedcrop model may be integrated into GPFARM. For ex-
corn and soybean season (calibration), respectively.ample, Cavero et al. (2000) and Cabelguenne et al.
Naturally, RMSE values tend to be greater when calcu-(1999) incorporated enhancements in their EPICPhase
lated over multiple years of validation than when calcu-version of the crop model to improve simulations of
lated for just one season of model calibration. The errorsroot water uptake, leaf area, biomass accumulation, and
in soil water content simulations are possibly well withinwater stress response. Xie et al. (2001) showed that
the range of spatial variability, considering that only twoALMANAC (Kiniry et al., 1992), which is also based
point measurements were taken per treatment (1500-m2

on the EPIC crop model, performed as well as or even
average plot area per treatment). Soil spatial variabil-better than the crop-specific CERES-Maize (Jones and
ity—another cause of spatial yield variability becauseKiniry, 1986) and SORKAM sorghum model (Rosen-
of its influence on soil water availability, fertility, andthal et al., 1989) in simulating single-year corn and sor-
root distribution—was not considered in the simulationsghum grain yields under water-limiting conditions.
as only one soil profile was used for each location. TheAs a temporary fix, calibration of the crop growth
simulations of soil water content may also be improvedmodel separately for different levels of water stress may
by more accurate representation of rainfall intensitiesimprove the predictions within those stress levels. For
instead of assuming 2-h duration for all storms. Theexample, we found that the calibration of LAImax and
simulation of root distribution and root water uptakeHI under Sterling toeslope conditions gave better pre-
also need further investigation. Furthermore, in thisdictions of grain yields at the toeslope than at the Ster-
study, all of the cropping systems were under no-tillling summit position with higher water stress levels. The
management, with significant amounts of crop residueRE values for corn grain yields were 28.7% (WCF) and
on the soil surface. Previous studies have shown that4.8% (WCMF) at the toeslope vs. 52.1% (WCF) and
rainfall interception (and subsequent water absorption)47.6% (WCMF) at the summit position. However, this
by residue can be a significant portion of total rainfallpractice violates the scientific method and only compen-
depth (Mohamoud and Ewing, 1990; Savabi and Stott,sates for the inadequacies of the water stress functions
1994). Thus, interception by crop residue can signifi-in the model. Thus, we favor the aforementioned testing
cantly reduce infiltration, especially during low-intensityand improvement of the crop model that should be
rainfall events occurring over dry crop residues. The simu-based on sound theories of the mechanisms of crop
lation of rainfall interception by residues in GPFARMresponse to varying levels of water stress.
would likely improve the soil water content simulations.One’s perception of model accuracy is highly depen-

dent on scale. For example, Rasse et al. (2000) pointed The simulations of total soil residual NO3–N look en-
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Vandenberg provided programming and technical assistancecouraging, but further evaluations of crop nitrate N up-
to make the GPFARM simulations possible. Appreciation istake and N dynamics are needed.
also extended to Lucretia Sherrod, USDA-ARS technician,Although the current version of GPFARM (v. 2.01)
for providing all of the processed experimental data fromwas found to be less suited for year-to-year grain yield
the Sustainable Dryland Agroecosystem Management project;prediction under dryland conditions in eastern Colo- Dr. Gregory S. McMaster for giving suggestions in crop param-

rado, it has potential as a heuristic tool for studying eterization; and Dr. James C. Ascough II, Dr. Liwang Ma,
long-term interactions between environment and crop and Dr. Dwayne G. Westfall for reviewing the manuscript.
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